Какие мышцы состоят из быстрых двигательных единиц. Двигательная единица - что это? У человека различают три вида мышц

Морфо-функциональной единицей мышцы является не мышечное волокно, а двигательная (или моторная) единица (ДЕ). ДЕ – это совокупность МН и всех мышечных волокон, которые иннервируются отростками его аксона (рис.).Все волокна, входящие в ДЕ имеют одинаковые морфо-функциональные свойства.

Рис. Схема строения ДЕ

Одна и та же мышца содержит ДЕ различного типа, которые функционируют независимо друг от друга. Все мотонейроны, иннервирующие одну конкретную мышцу, называются пулом МН.

Принцип рекрутирования (вовлечения) ДЕ в процесс сокращения мышцы

ДЕ вовлекаются в процесс возбуждения и сокращения в соответствии с их размером. Вначале активируются самые маленькие и наиболее возбудимые ДЕ. Увеличение силы стимуляции мышцы приводит к рекрутированию более крупных и менее возбудимых ДЕ и увеличению напряжения/сокращения мышцы.

Типы ДЕ

В зависимости от морфофункциональных особенностей различают 3 основных типа ДЕ.

· Медленные оксидативные устойчивые к утомлению - S (slow); I тип

· Небольшой диаметр нервных и мышечных волокон и МН; большое количество мышечных волокон в ДЕ.

· Богатая кровоснабжение, много митохондрий и миоглобина (красные волокна ) → высокая окислительная способность, но достаточно медленный метаболизм (медленная активность миозиновой АТФазы); энергия за счёт окислительного фосфорилирования (аэробный метаболизм).

· Низкий порог активации мотонейронов; небольшая скорость сокращения, высокая устойчивость к утомлению (аэробная выносливость), быстрое восстановление.

· Не развивают большую силу/напряжение при сокращении.

· Используются при под­держании ненагрузочной статической работы, например, при сохра­нении позы тела.

· Составляют около 50% волокон в общей массе.

· Быстрые волокна; тип II

· Толще, чем мышечные волокна I типа; иннервируются большими а-мотонейронами.

· Хуже кровоснабжаются и имеют меньше митохондрий, липидов и миоглобина (белые или светло-красные волокна).



· Высокая скорость сокращения, большая сила, но быстрее утомляются; способны на кратковременную работу

Выделяют 2 вида быстрых волокон

· Быстрые гликолитические утомляемые волокна (FF); IIb тип

· Менее возбудимы (высокий порог активации мотонейрона), включаются при больших кратковременных нагрузках и обеспечивают быстрые и мощные сокращения мышц (высокая сила); быстро утомляются.

· Быстрые оксидативно-гликолитические устойчивые к утомлению (FR); IIа тип

· Промежуточный тип, волокна среднего размера.

· Источниками энергии являются как окислительные, так анаэробные механизмы (быстрые окислительные волокна).

· Более выносливы, чем волокна IIb типа, но утомляются быстрее, чем волокна I типа.

· Способны к выраженному сокращению, при этом развивают среднюю силу.

· Составляют около 30% волокон.

Таблица. Сравнительная характеристика 3-х типов мышечных волокон.

Характеристики I тип медленные оксидативные IIa тип быстрые оксидативно-гликолитические (промежуточные) IIb тип быстрые гликолитические
Диаметр Маленький Средний Большой
Содержание миоглобина Высокое Высокое Низкое
Цвет Красные (много миоглобина и митохондрий) Светло-красный (красный) Белые (мало миоглобина и митохондрий)
Плотность митохондрий Высокая Высокая Низкая
Оксидативные возможности и плотность капилляров Высокие Высокие Низкие
АТФаза миозина Медленная Быстрая Очень быстрая
Гликолитические возможности и содержание гликогена Низкие Промежуточные Высокие
Обмен веществ Окислительный Смешанный (окислительно-гликолитический) Гликолитический
Порог активации Низкий Средний Высокий
Скорость сокращения Медленная (частота нервных импульсов до 25 Гц) Средняя (25-50 Гц) Высокая (частота нервных импульсов 50-100 Гц)
Устойчивость к утомлению Высокая Снижение силы на 50% через несколько часов Средняя Снижение силы на 50% через 10 мин Низкая Снижение силы на 50% через 1,5 мин
Сила сокращений* Низкая Высокая Высокая
Функции (примеры) Поза, активность на выносливость; медленные и длительные сокращения антигравитационных мышц шеи, спины и конечностей (в основном разгибателей) Ходьба; длительные фазные движения (в основном сгибатели) Кратковременные анейробные нагрузки; кратковременные фазные движения (в основном сгибатели)

По морфофункциональным свойствам двигательные единицы делятся на 3 типа:

1. Медленные неутомляемые ДЕ. Мотонейроны имеют наиболее низкий порог активации, способны поддерживать устойчивую частоту разрядов в течение десятков минут (т.е. неутомляемы). Аксоны обладают небольшой толщиной, низкой скоростью проведения возбуждения, иннервируют небольшую группу мышечных волокон. Мышечные волокна развивают небольшую силу при сокращении в связи с наличием в них наименьшего количества сократительных белков – миофибрилл. Это так называемые «красные волокна» (цвет обусловлен хорошим развитием капиллярной сети и небольшим количеством миофибрилл). Скорость сокращения этих волокон в 1,5 – 2 раза меньше, чем быстрых. Они неутомляемы благодаря хорошо развитой капиллярной сети, большому количеству митохондрий и высокой активности окислительных ферментов.

2. Быстрые, легко утомляемые ДЕ. Имеют наиболее крупный мотонейрон, обладающий наиболее высоким порогом возбуждения, не способны в течение длительного времени поддерживать устойчивую частоту разрядов (утомляемые). Аксоны толстые, с большой скоростью проведения нервных импульсов, иннервирует много мышечных волокон. Мышечные волокна содержат большое число миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности ферментов скорость сокращения высокая. Эти волокна быстро утомляются, т.к. содержат меньше, по сравнению с медленными, митохондрий и окружены меньшим количеством капилляров.

3. Быстрые, устойчивые к утомлению. Сильные, быстро сокращающиеся волокна, обладающие большой выносливостью благодаря возможности использования аэробных и анаэробных процессов получения энергии. Волокна 2 и 3 типов называются «белыми волокнами» из-за большого содержания миофибрилл и низкого – миоглобина.

Сравнение медленных и быстрых мышечных волокон

Скелетная мышца человека состоит из волокон 3 типов, однако их соотношение может значительно отличаться в зависимости от функции мышцы, а также врожденной и приобретенной индивидуальности. Чем больше в мышцах белых волокон, тем лучше человек приспособлен к выполнению работы, требующей большой скорости и силы. Преобладание красных волокон обеспечивает выносливость при выполнении длительной работы.

Строение скелетной мышцы

Скелетная мышца состоит из множества мышечных волокон, которые расположены пучками в общем соединительнотканном футляре и крепятся к сухожилиям, связанным со скелетом. Каждое мышечное волокно – это тонкое (от 10 до 100 мкм) вытянутое в длину (от 5 до 400мм) многоядерное образование – симпласт .

Мембраны мышечного волокна сходна по строению с нервной, но она дает регулярные Т-образные впячивания . Внутри мышечного волокна параллельно мембране располагается разветвленная замкнутая система трубочек – саркоплазматический ретикулум – внутриклеточное депо Ca 2+ . Т-система и прилегающий к ней СР – аппарат передачи возбуждения с мембраны мышечного волокна на сократительные структуры (миофибриллы) . В саркоплазме мышечного волокна можно увидеть поперечные чередующиеся светлые и темные участки – соответственно, J- (изотропные) и А-(анизотропные) диски. В соседних миофибриллах одноименные диски расположены на одном уровне, что придает волокну поперечную исчерченность. Комплекс из одного темного и двух прилежащих к нему половин светлых дисков, ограниченных поперечными Z-пластинками, называют саркомером .

Каждая миофибрилла состоит их множества параллельно лежащих толстых (миозиновых) и тонких (актиновых) белковых нитей – миофиламентов . По сечению волокна толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых. Миозиновые нити имеют отходящие от них поперечные выступы с головками, состоящими примерно из 150 молекул миозина. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина , а в желобках между двумя нитями актина лежат нити тропомиозина .

Механизм сокращения мышечного волокна

В 1954 г. Г.Хаксли и Н.Хэнсон обнаружили, что актиновые и миозиновые филаменты не изменяют своей длины при укорочении или удлинении саркомера и вывели теорию скольжения нитей : мышечное сокращение происходит при последовательном связывании нескольких центров миозиновой головки поперечного мостика с определенными участками на актиновых филаментах.

В покоящихся мышечных волокнах молекулы тропомиозина в покое располагаются так, что предотвращают прикрепление поперечных мостиков миозина к актиновым нитям (мышца расслаблена).

Возникающий в области аксо-соматического синапса ПД распространяется по системе Т-трубочек вглубь волокна, вызывая деполяризацию цистерн саркоплазматического ретикулума (депо Са 2+). При активации мембраны СР происходит открытие Са-каналов и выход Са 2+ по концентрационному градиенту.

При повышении в миоплазме концентрации ионов Са 2+ он соединяется с тропонином, последний конформируется и отодвигает нить тропомиозина, открывая для миозиновой головки возможность соединения с актином. Соединение головки приводит к резкому «сгибанию» мостика и перемещению нити актина на 1 шаг (20 нм или 1% длины актина) к середине саркомера с последующим разрывом мостика.

При отсутствии повторного возбуждения концентрация Са 2+ благодаря работе Са-насоса падает. Поэтому Са 2+ отсоединяется от тропонина и тропомиозин снова блокирует актин. При этом на одно рабочее движение одного мостика тратится энергия 1 молекулы АТФ, еще одной – на возврат 2 ионов Са 2+ в цистерны.

Все это приводит к расслаблению мышцы вплоть до момента прихода очередного потока нервных импульсов, когда описанный выше процесс повторяется.

Совокупность процессов, обуславливающих распределение ПД вглубь мышечного волокна, выход ионов Са 2+ из саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называется электромеханическим сопряжением .

Механика мышцы. Физические свойства и режимы мышечных сокращений

Физические свойства скелетных мышц

1. Растяжимость - способность мышцы изменять свою длину под действием растягивающей ее силы.

2. Эластичность - способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы.

3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Удельная сила - максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

4. Способность мышцы совершать работу . Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т. к. снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок ).

Режимы мышечных сокращений

Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

При изометрическом сокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.

Моторная или двигательная единица представляет собой группу волокон, которые иннервируются одним мотонейроном. Количество волокон, входящих в одну единицу, может варьироваться в зависимости от функции мышцы. Чем более мелкие движения она обеспечивает, тем меньше моторная единица и меньше усилий надо для ее возбуждения.

Двигательные единицы: их классификация.

В изучении данной темы есть важный момент. Существуют критерии, по которым может быть охарактеризована любая двигательная единица. Физиология как наука, выделяет два критерия:

  • скорость сокращения в ответ на проведение импульса;
  • скорость утомления.

Соответственно, исходя из этих показателей, можно выделить три типа двигательных единиц.

  1. Медленные, не утомляющиеся. Их мотонейроны содержат много миоглобина, который имеет высокое сродство к кислороду. Мышцы, имеющие в большом количестве медленные мотонейроны, называются красными из-за их специфического цвета. Они необходимы для поддержания позы человека и удержания его в равновесии.
  2. Быстрые, утомляемые. Такие мышцы способны выполнять большое количество сокращений за короткий промежуток времени. Волокна их содержат много энергетического материала, из которого при помощи можно получить молекулы АТФ.
  3. Быстрые, устойчивые к утомлению. В этих волокнах содержится мало митохондрий, а АТФ образуется за счет расщепления молекул глюкозы. Эти мышцы именуются белыми, поскольку в них отсутствует миоглобин.

Единицы первого типа

Двигательная единица первого типа или медленная неутомляемая, встречается чаще всего в крупных мышцах. Такие мотонейроны имеют низкий порог возбуждения и скорость проведения нервного импульса. Центральный отросток нервной клетки в своем терминальном отделе разветвляется и иннервирует небольшую группу волокон. Частота разрядов, поступающих к медленным двигательным единицам - от шести до десяти импульсов в секунду. Мотонейрон может поддерживать такой ритм в течение нескольких десятков минут.

Сила и скорость сокращения двигательных единиц первого типа в полтора раза меньше, чем у других типов моторных единиц. Причина этого - низкая скорость образования АТФ и медленных выходов ионов кальция на наружную мембрану клетки для связывания с тропонином.

Единицы второго типа

Двигательная единица этого типа имеет крупный мотонейрон с толстым и длинным аксоном, который иннервирует большой пучок мышечных волокон. Эти нервные клетки имеют наиболее высокий порог возбуждения и высокую скорость проведения

При максимальном напряжении мышцы, частота нервных импульсов может достигать пятидесяти в секунду. Но мотонейрон не способен длительно поддерживать такую скорость проведения, поэтому быстро устает. Сила и скорость сокращения мышечного волокна второго типа выше, чем у предыдущего, так как количество миофибрилл в нем больше. В волокнах содержится много ферментов, расщепляющих глюкозу, но меньше митохондрий, белка миоглобина и кровеносных сосудов.

Единицы третьего типа

Двигательная единица третьего типа относится быстрым, но устойчивым к утомлению мышечным волокнам. По своим характеристикам она должна занимать промежуточное значение между первым типом двигательных единиц и вторым. таких мышц сильные, быстрые и выносливые. Для добычи энергии она могут использовать как аэробный, так и анаэробный пути.

Соотношение быстрых и медленных волокон генетически детерминировано и может отличаться у разных людей. Именно поэтому кто-то хорош в беге на длинные дистанции, кто-то с легкостью преодолевает спринтерскую стометровку, а кому-то больше подходит тяжелая атлетика.

Рефлекс на растяжение и мотонейронный пул

При растягивании любой мышцы первыми реагируют медленные волокна. Их нейроны генерируют разряды до десяти импульсов в секунду. Если мышцу продолжать растягивать, то частота генерируемых импульсов возрастет до пятидесяти. Это приведет к сокращению двигательных единиц третьего типа и увеличит силу мышцы в десять раз. При дальнейшем растяжении подключатся моторные волокна второго типа. Это преумножит еще в четыре-пять раз.

Двигательная мышечная единица управляется мотонейроном. Совокупность нервных клеток, входящих в состав одной мышцы, называется мотонейронный пул. В одном пуле могут одновременно находиться нейроны из разных, по качественным и количественным проявлениям, двигательных единиц. Из-за этого участки мышечных волокон включаются в работу не одновременно, а по мере того, как увеличивается напряжение и скорость нервных импульсов.

«Принцип величины»

Двигательная единица мышцы, в зависимости от ее типа, сокращается только при достижении определенной пороговой нагрузки. Порядок возбуждения моторных единиц стереотипный: сначала сокращаются мелкие мотонейроны, затем нервные импульсы постепенно добираются до крупных. Эту закономерность в середине двадцатого века заметил Эдвуд Хеннеман. Он назвал ее «принцип величины».

Броун и Бронк за полвека до этого публиковали свои труды по исследованию принципа работы мышечных единиц разных типов. Они выдвинули предположение, что существует два способа управления сокращениями мышечных волокон. Первый из них - это увеличить частоту нервных импульсов, а второй - вовлечь в процесс как можно большее количество мотонейронов.

Движение - необходимое условие развития и существования организма, его приспособления к окружающей среде. Именно движение является основой целенаправленного поведения, что раскрывается словами Н.А.Бернштейна: «Очевидная огромная биологическая значимость двигательной деятельности организмов - почти единственной формы осуществления не только взаимодействия с окружающей средой, но и активного воздействия на эту среду, изменяющего ее с небезразличными для особи результатами…». Еще одним проявлением значимости движений является то, что в основе любой профессиональной деятельности лежит работа мышц.

Все многообразие двигательной деятельности осуществляется с помощью опорно-двигательного аппарата . Его составляют специализированные анатомические образования: мышцы, скелет и центральная нервная система.

В опорно-двигательном аппарате с определенной степенью условности выделяют пассивную часть - скелет и активную часть - мышцы.

К скелету относятся кости и их соединения (например, суставы).

Скелет служит опорой внутренним органам, местом прикрепления мышц, защищает внутренние органы от внешних механических повреждений. В костях скелета расположен костный мозг - орган кроветворения. В состав костей входит большое количество минеральных веществ (в наибольшей степени представлены кальций, натрий, магний, фосфор, хлор). Кость представляет собой динамичную живую ткань с высокой чувствительностью к различным регуляторным механизмам, к эндо - и экзогенным влияниям. Кость - не только орган опоры, но и важнейший участник минерального обмена (подробнее - в разделе Обмен веществ). Интегральным показателем метаболической активности костной ткани служат продолжающиеся в течение всей жизни процессы активной перестройки и обновления костных структур. Эти процессы, с одной стороны, являются важным механизмом поддержания минерального гомеостаза, с другой - обеспечивают структурную адаптацию кости к меняющимся условиям функционирования, что особо значимо в связи с регулярными занятиями физической культурой и спортом. В основе постоянно протекающих процессов костной перестройки лежит активность костных клеток - остеобластов и остеокластов.

Мышцы за счет способности сокращаться приводят в движение отдельные части тела, а также обеспечивают поддержание заданной позы. Мышечное сокращение сопровождается выработкой большого количества тепла, а значит, работающие мышцы участвуют в теплообразовании. Хорошо развитые мышцы являются прекрасной защитой внутренних органов, сосудов и нервов.



Кости и мышцы, как по массе, так и по объему составляют значительную часть всего организма, в их соотношении имеются существенные половые различия. Мышечная масса взрослого мужчины - от 35 до 50 % (в зависимости от того, насколько развиты мышцы) от общей массы тела, женщины - примерно 32-36 %. У спортсменов, специализирующихся в силовых видах спорта, мышечная масса может достигать 50-55%, а у культуристов – 60-70% общей массы тела. На долю костей приходится 18 % от массы тела у мужчин и 16 % у женщин.

У человека различают три вида мышц:

поперечнополосатые скелетные мышцы;

поперечнополосатая сердечная мышца;

гладкие мышцы внутренних органов, кожи, сосудов.

Гладкие мышцы делятся на тонические (не способны развивать «быстрые» сокращения, в сфинктерах полых органов) и фазно-тонические (которые делятся на обладающие автоматией , т.е. способностью к спонтанной генерации фазных сокращений. Примером могут быть мышцы органов ЖКТ и мочеточников, и не обладающие этим свойством – мышечный слой артерий, семенных протоков, мышца радужки глаза, они сокращаются под влиянием импульсов вегетативной нервной системы. Двигательная иннервация гладких мышц осуществляется отростками клеток вегетативной нервной системы, чувствительная - отростками клеток спинальных ганглиев. Как правило, сокращение гладкой мускулатуры не может быть вызвано произвольно, в регуляции ее сокращений не участвует кора мозга. Функция гладких мышц заключается в том, чтобы поддерживать длительное напряжение, при этом они затрачивают в 5 - 10 раз меньше АТФ, чем понадобилось бы для выполнения такой же задачи скелетной мышце.

Гладкие мышцы обеспечивают функцию полых органов , стенки которых они образуют. Благодаря гладким мышцам осуществляется изгнание содержимого из мочевого пузыря, кишок, желудка, желчного пузыря, матки. Гладкие мышцы обеспечивают сфинктерную функцию – создают условия для хранения определенного содержимого в полом органе (мочи в мочевом пузыре, плода в матке). Изменяя просвет кровеносных сосудов, гладкие мышцы адаптируют регионарный кровоток к местным потребностям в кислороде и питательных веществ, участвуют в регуляции дыхания за счет изменения просвета бронхиального дерева.



Скелетные мышцы являются активной частью опорно-двигательного аппарата, обеспечивая целенаправленную деятельность, в первую очередь за счет произвольных движений (подробнее особенности их строения и принципов работы рассмотрены ниже).

Виды мышечных волокон

Мышцы состоят из мышечных волокон, обладающих разной силой, скоростью и длительностью сокращения, а также утомляемостью. Ферменты в них обладают разной активностью и представлены в различных изомерных формах. Заметно различие в них содержания дыхательных ферментов – гликолитических и окислительных. По соотношению миофибрилл, митохондрий и миоглобина различают так называемые белые, красные и промежуточные волокна . По функциональным особенностям мышечные волокна делят на быстрые, медленные и промежуточные . Если по активности АТФазы мышечные волокна различаются довольно резко, то степень активности дыхательных ферментов варьирует весьма значительно, поэтому наряду с белыми и красными существуют и промежуточные волокна.

Наиболее явно мышечные волокна различаются особенностями молекулярной организации миозина. Среди различных его изоформ существуют две основных – «быстрая» и «медленная». При постановке гистохимических реакций их различают по АТФазной активности. С этими свойствами коррелирует и активность дыхательных ферментов. Обычно в быстрых волокнах (FF-волокна - быстро сокращающиеся, fast twitch fibres), преобладают гликолитические процессы, они более богаты гликогеном, в них меньше миоглобина, поэтому их называют также белыми. В медленных волокнах , обозначаемых как S (ST) волокна (slow twitch fibres), напротив, выше активность окислительных ферментов, они богаче миоглобином, выглядят более красными. Они включаются при нагрузках в пределах 20-25% от максимальной силы и отличаются хорошей выносливостью.

FT - волокна, обладающие по сравнению с красными волокнами небольшим содержанием миоглобина, характеризуются высокой сократительной скоростью и возможностью развивать большую силу. По сравнению с медленными волокнами они могут вдвое быстрее сокращаться и развить в 10 раз большую силу. FT-волокна, в свою очередь, подразделяются на FTO-и FTG-волокна. Существенные различия между перечисленными типами мышечных волокон определяется способом получения энергии (рис.2.1).

Рис. 2.1Различия энергообеспечения у мышечных волокон разных типов (по http://medi.ru/doc/g740203.htm).

Получение энергии в FTO-волокнах происходит так же, как и в ST-волокнах, преимущественно путем окислительного фосфорилирования. В связи с тем, что этот процесс разложения протекает относительно экономично (на каждую молекулу глюкозы при разложении мышечного гликогена для получения энергии накапливается 39 энергетических фосфатных соединений), FTO-волокна имеют также относительно высокую сопротивляемость утомляемости. Накопление энергии в FTG-волокнах происходит преимущественно путем гликолиза, т. е. глюкоза в отсутствии кислорода распадается до еще относительно богатого энергией лактата. В связи с тем, что этот процесс распада неэкономичен (на каждую молекулу глюкозы для получения энергии накапливается всего лишь 3 энергетических фосфатных соединения), FTG-волокна относительно быстро утомляются, но, тем не менее они способны развить большую силу и, как правило, включаются при субмаксимальных и максимальных мышечных сокращениях.

Двигательные единицы

Основным морфофункциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица – ДЕ (рис.2.2.).

Рис 2.2. Двигательная единица

ДЕ включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт – нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. ДЕ мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных мышцах их в сотни раз больше.

ДЕ активизируются по закону „все или ничего". Таким образом, если от тела мотонейрона переднего рога спинного мозга посылается по нервным путям импульс, то на него реагируют или все мышечные волокна ДЕ, или ни одного. Для бицепса это означает следующее: при нервном импульсе необходимой силы укорачиваются все сократительные элементы (миофибриллы) всех (примерно 1500) мышечных волокон соответствующей ДЕ.

Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:

I. Медленные неутомляемые . Они образованы "красными" мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы, поэтому эти волокна относят к тоническим. Регуляция сокращений таких, волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример – камбаловидная мышца.

II В. Быстрые, легко утомляемые . Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными . Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Напр., мышцы глаза.

II А. Быстрые, устойчивые к утомлению (промежуточные).

Все мышечные волокна одной ДЕ относятся к одному и тому же типу волокон (FT- или ST-волокна).

Мышцы, задействованные в выполнении очень точных и дифференцированных движений (например, мышцы глаз или пальцев руки), состоят обычно из большого количества ДЕ (от 1500 до 3000). Такие ДЕ имеют небольшое количество мышечных волокон (от 8 до 50). Мышцы, выполняющие относительно менее точные движения (например, большие мышцы конечностей), обладают существенно меньшим количеством ДЕ, но в их состав включено большое число волокон (от 600 до 2000).

В среднем человек имеет примерно 40% медленных и 60 % быстрых волокон. Но это средняя величина (по всей скелетной мускулатуре), мышцы же выполняют различные функции. Количественный и качественный состав мышц неоднороден, в них входит различное число двигательных единиц, соотношение типов которых также различно (композиция мышц) . В связи с этим сократительные способности разных мышц неодинаковы. Наружные мышцы глаза, которые вращают глазное яблоко, развивают максимальное напряжение за одно сокращение длительностью всего 7.5 мс, камбалообразная – антигравитационная мышца нижней конечности, очень медленно развивает максимальное напряжение в течение 100 мс. Мышцы, выполняющие большую статическую работу (камбаловидная мышца), часто обладают большим количеством медленных ST-волокон, а мышцы, совершающие преимущественно динамические движения (бицепс), имеют большое количество FT-волокон.

Основные свойства мышечных волокон (следовательно, и двигательных единиц – ДЕ, в состав которых они входят), определяемые также свойствами мотонейронов, представлены в таблице 1.

Двигательные единицы

Сила и работа мышечного волокна. Двигательные единицы.

Величина сокращения (сила мышцы) зависит от морфологических свойств и физиологического состояния мышцы:

1. Исходной длины мышцы (длинны покоя). Сила мышечного сокращения зависит от исходной длины мышцы или длины покоя. Чем сильнее мышца растянута в покое, тем сильнее сокращение (закон Франка-Старлинга).

2. Диаметра мышцы или поперечного сечения. Выделяют два диаметра:

а) анатомический диаметр – поперечное сечение мышц.

б) физиологический диаметр – перпендикулярное сечение каждого мышечного волокна. Чем больше физиологическое сечение, тем большей силой обладает мышца.

Сила мышцы измеряется весом максимального груза поднятого на высоту или максимальным напряжением, ĸᴏᴛᴏᴩᴏᴇ она способна развить в условиях изометрического сокращения. Измеряется в килограммах или ньютонах. Методика измерения силы мышцы принято называть динамометрия.

Выделяют два вида силы мышцы:

1. Абсолютная сила – отношение максимальной силы к физиологическому диаметру.

2. Относительная сила – отношение максимальной силы к анатомическому диаметру.

При сокращении мышца способна выполнять работу. Работа мышцы измеряется произведением поднятого груза на величину укорочения.

Работа мышцы характеризуется мощностью. Мощность мышцы определяется величиной работы в единицу времени и измеряется в ваттах.

Наибольшая работа и мощность достигается при средних нагрузках.

Мотонейрон с группой иннервируемых им мышечных волокон составляет двигательную единицу. Аксон мотонейронов может ветвиться и иннервировать группу мышечных волокон. Так, один аксон может иннервировать от 10 до 3000 мышечных волокон.

Различают двигательные единицы по строению и функциям.

По строению двигательные единицы делятся на:

1. Малые двигательные единицы, которые имеют малый мотонейрон и тонкий аксон, способный иннервировать 10-12 мышечных волокон. К примеру, мышцы лица, мышцы пальцев рук.

2. Большие двигательные единицы представлены крупным телом мотонейрона, толстым аксоном, который способен иннервировать более 1000 мышечных волокон. К примеру, четырехглавая мышца.

По функциональному значению двигательные единицы делятся на:

1. Медленные двигательные единицы. Οʜᴎ включают малые двигательные единицы, являются легко возбудимыми, характеризуются невысокой скоростью распространения возбуждения, в работу включаются первыми, но при этом они практически не утомляемы.

2. Быстрые двигательные единицы. Οʜᴎ состоят из больших двигательных единиц, плохо возбудимы, обладают большой скоростью проведения возбуждения. Обладают высокой силой и скоростью ответа. К примеру, мышцы боксера.

Эти особенности двигательных единиц обусловлены рядом свойств.

Мышечные волокна, которые входят в двигательные единицы, имеют сходные свойства и различия. Так, медленные мышечные волокна обладают:

1. Богатой капиллярной сетью.

3. Содержит много миоглобина (ᴛ.ᴇ. способны связывать большое количество кислорода).

4. В них содержится много жиров.

Благодаря этим особенностям эти мышечные волокна обладают высокой выносливостью, способны к небольшим по силе сокращениям, но длительным по времени.

Отличительные особенности быстрых мышечных волокон:

2. Обладают большей скоростью и силой сокращения.

В связи с этими особенностями быстрые мышечные волокна быстро утомляемы, но обладают большой силой и высокой скоростью ответа.

Двигательные единицы - понятие и виды. Классификация и особенности категории "Двигательные единицы" 2017, 2018.



Copyright © 2024 Спортивный тренинг.